Smart Integration of Climate Chamber Operations

Team 508 Design Review 5 February 19, 2019

Team Introductions

Cassie Roby Lead Engineer

Danny Carlos Design and Software Engineer

Daniel Lane Lead Design Engineer

Kyle Barber Project Manager

Sara Steele Systems Engineer

Kyle Barber

Vinayak Hegde, Danfoss Turbocor Compressors Inc.

Background: Energy efficient technologies

Neda Yaghoobian, Ph.D. College of Engineering

Background: Computational fluid dynamics

Objective

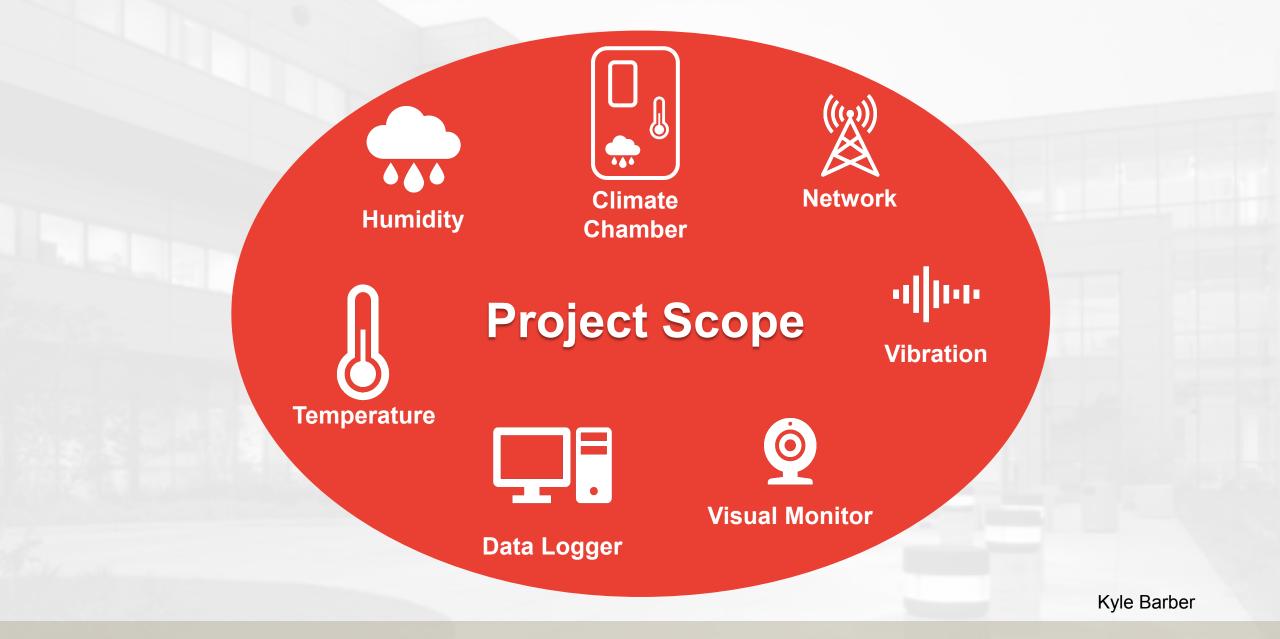
To design a smart integration network and an observation system with remote accessibility for climate chamber tests.

Kyle Barber

4

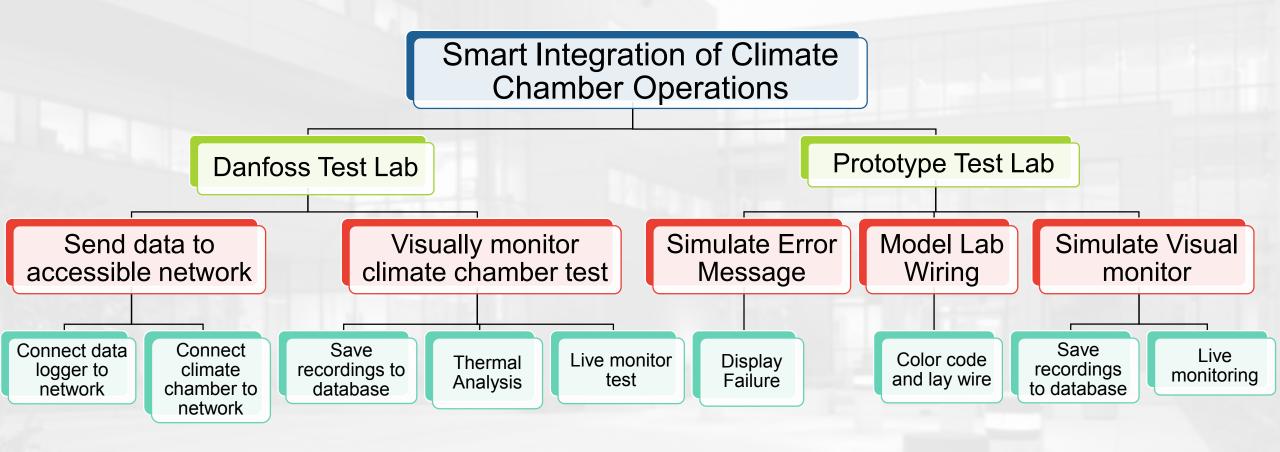
Project Background

Danfoss climate chambers experience random power failures during testing and test engineers are unaware until visiting the test site. User must manually collect data with USB drive.



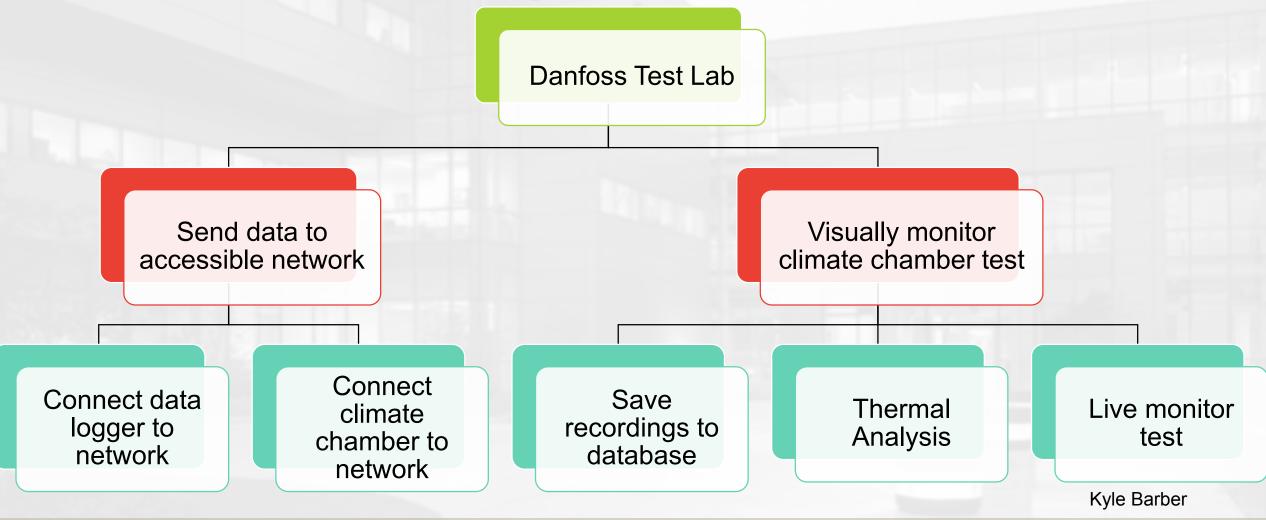
Project Summary

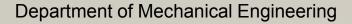
- To connect the Danfoss climate chambers and dataloggers to the accessible network
- To design and build a small scale prototype to demonstrate the software used to view the video footage of the climate chambers
- To research a camera that will withstand the environment in the chambers or design a possible insulation system



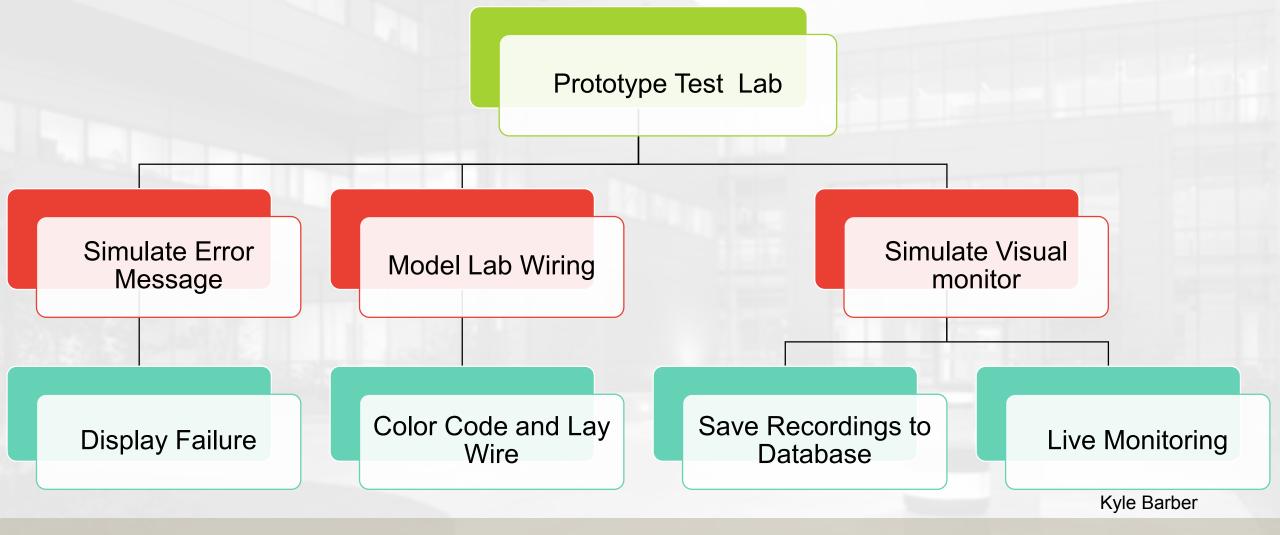
Customer Needs

- To remotely transport data from climate chamber to user computer
- Real time visual footage monitoring and recording the test
- Prototype of laboratory floor plan including microcomputer, camera, and tablet
- Prototype is not to exceed \$4500


Functional Decomposition



Kyle Barber


Functional Decomposition

Functional Decomposition

Department of Mechanical Engineering

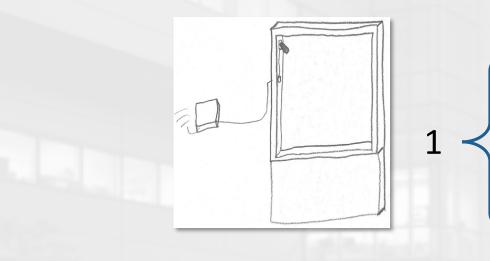
Previous Work

- Spring project plan and Gantt chart
- Bill of Materials for prototype approved
- CAD all prototype parts
- 3D print all prototype parts
- Researched software to run cameras
- Researched how to connect climate chambers and data loggers to servers

Current Work

- Insulation and camera thermal analysis
- Unexpected delays in shipping acrylic casing

Conceptual Design


Next Presenter: Cassie Roby

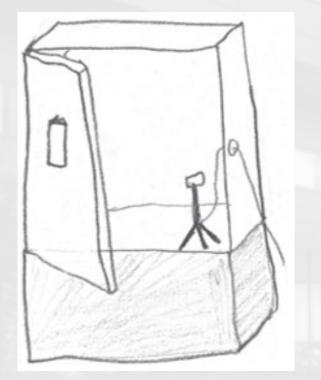
Department of Mechanical Engineering

Concept Generation

Climatic Chamber

- One corner adhesive mounted camera
- Insulation around camera
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 Series data logger
- Internet connection through Ethernet cable
- One outside mounted camera (side)
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 data logger
- Internet connection through Ethernet cable

Cassie Roby


14

Department of Mechanical Engineering

THE

Concept Generation

6



- One camera mounted on stand on chamber floor
- Insulation around camera
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 data logger
- Internet connection through Ethernet Cable

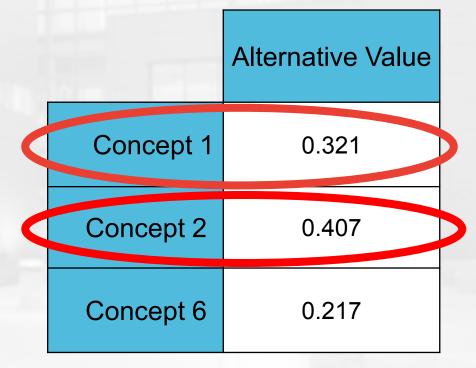
Cassie Roby

Concept Selection

Criteria Comparison Matrix

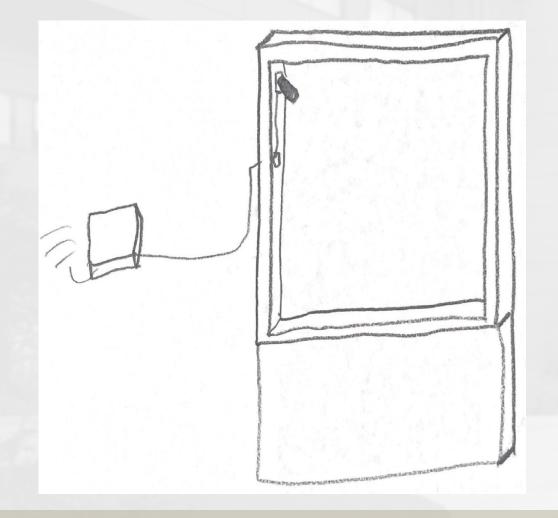
Normalized Criteria Comparison Matrix Final Matrix

×,∱



Analytic Hierarchy Process

	Concept 1	Concept 2	Concept 6						
Cost	0.48	0.11	0.41						
Area View	0.29	0.30	0.14						
Temperature	0.16	0.50	0.19						
Frames Per Second	0.19	0.25	0.16						
Max Size	0.21	0.66	0.10						
Weight	0.24	0.10	0.62						
Relative Humidity	0.07	0.50	0.18						
Sum	0.28	0.35	0.26						


Final Matrix

Alternative Value = $[Final Matrix]^T * \{P_i\}$

Concept 1

- One corner adhesive mounted camera
- Insulation around camera
- Scaled prototype of lab
- The camera will be live streamed and save recordings
- Data accessible by connecting existing DL350 to the internet via Ethernet cable

Camera Research

Larson Electronics Outdoor Security Camera

- \$ 6,056.01
- Hot: 140°C
- Cold: -40°C

Canty High Temperature Surveillance Camera

- \$ Waiting on response
- Hot: 1371°C
- Cold: -10°C

Thermal Analysis

Larson Electronics Temperature Difference

- Cold -33°C
- Hot +40°C

Canty Camera Temperature Difference

- Cold -63°C
- Hot +1191°C

Target Temperatures

-73°C to 180°C

Thermal Analysis – Heat Transfer

Conduction

- Camera mounted to chamber wall
- Will need small mounting area to reduce conduction in both hot and cold conditions

Convection

- Camera will experience convection as air in the chamber circulates
- The upper corners of the chamber will experience the hottest air. Good for cold condition, but not for hot condition.

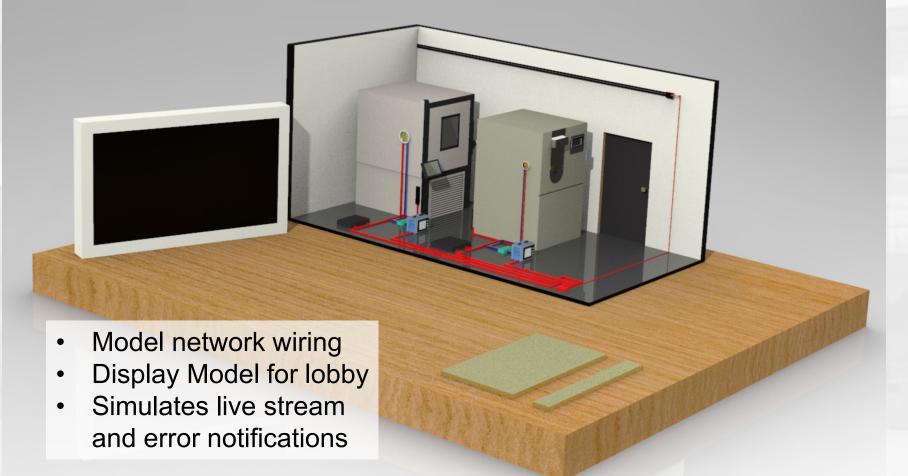
Radiation

- Subsystems tested inside the chamber give off heat
- Can be reduced through multi-layer insulation, but will need to be increased during cold conditions.

Cassie Roby

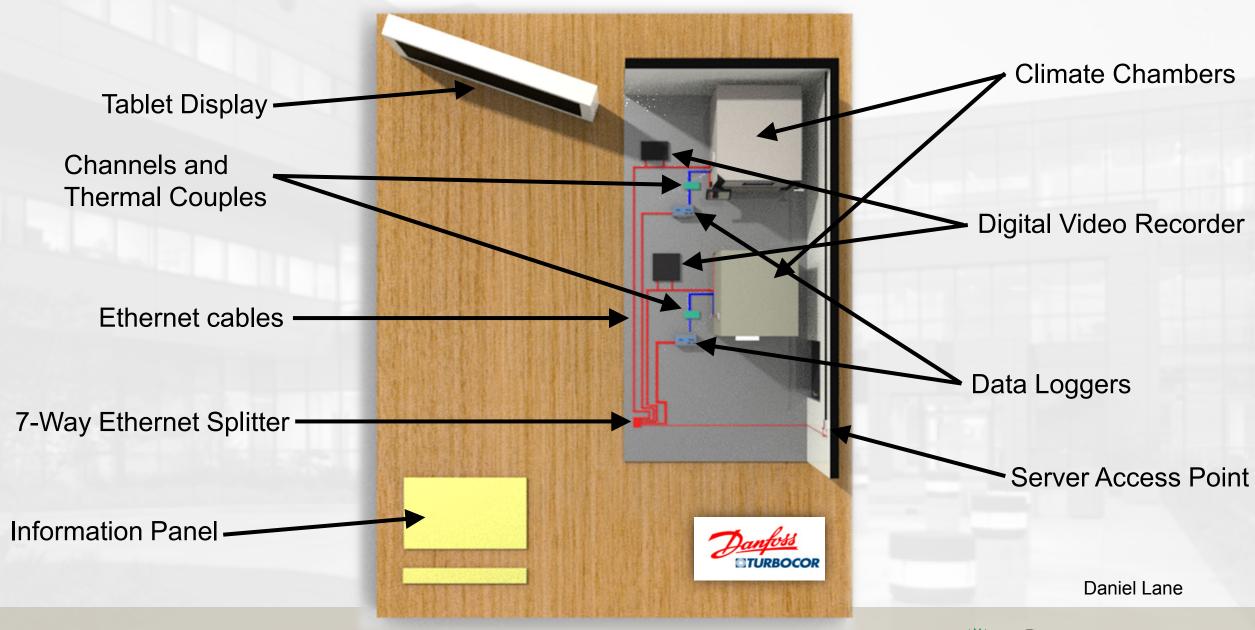
Thermal Analysis – Insulation

- Works by slowing conductive heat flow and to a lesser extent convective heat flow
- At steady state temperatures for long periods of time insulation will fail as all the insulating material becomes the same temperature as the chamber
- Static material insulation will not work unless the camera is removed from chamber after a pre-determined amount of time
- Hot/cold liquid insulation option
 - Must have hot/cold water readily available
 - Needs tubes run into the chamber, up the chamber wall, and around the camera
 - Currently not enough room outside chamber

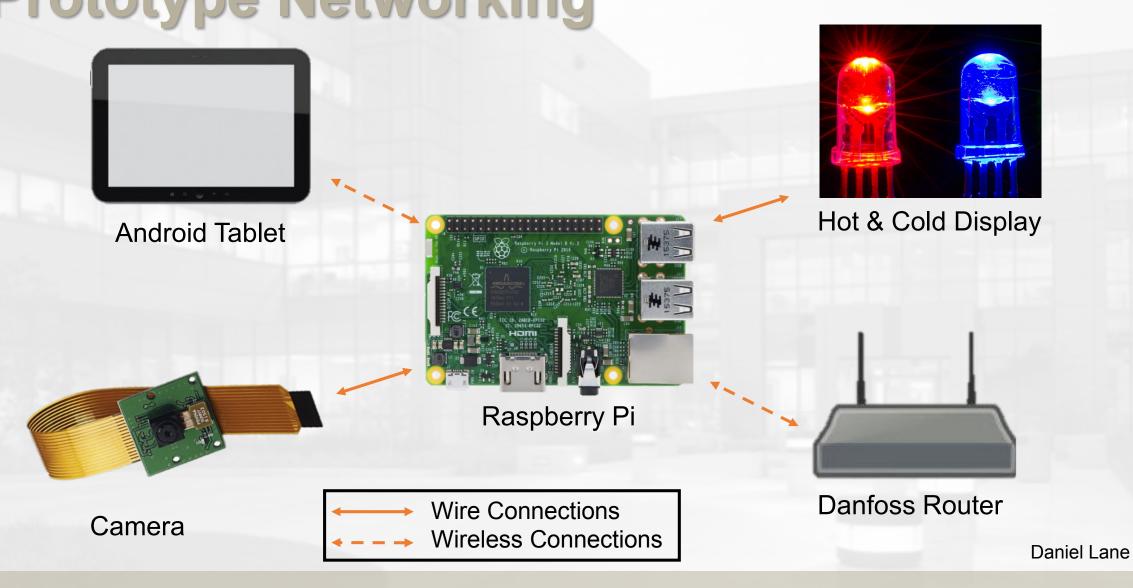


Embodiment Design

Next Presenter: Daniel Lane



Prototype CAD



Daniel Lane

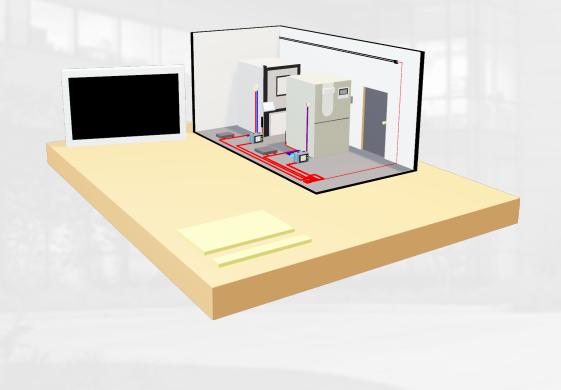
Prototype Networking

Department of Mechanical Engineering

Software

MotionEye

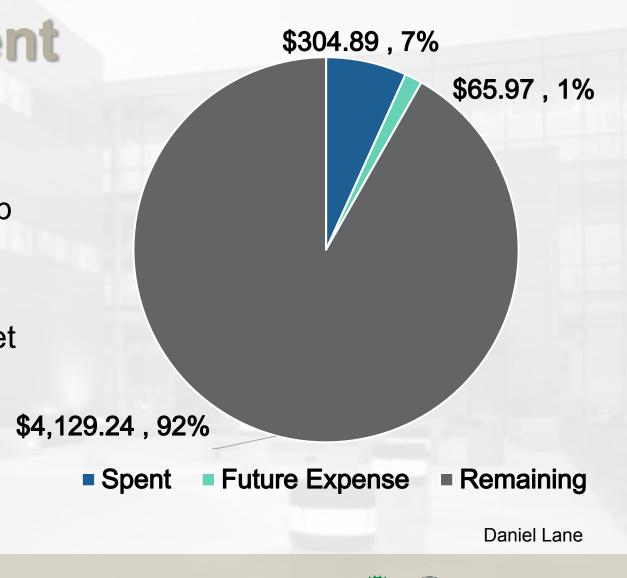
- Surveillance software
- Compatible with any camera
- Live steam video
- Detect motion
- Save video for future use



Daniel Lane

Manufacturing

Daniel Lane


Department of Mechanical Engineering

Project Management

We were able to reduce costs by:

- 3D printing at the Innovation Hub
- Utilizing tools from the senior design room
- Choosing a limited function tablet

Moving Forward

Task Name	Jan 27, '19	Feb 17, '19	Mar 10, '19	Mar 31, '19	Apr 21, '19
Receive all parts		•			
Complete prototype build				•	
Prototype testing complete				•	
Prototype documentation, connection	-				•
proposal, and operation manual					
Engineering Design Day					
Finals Week					
Graduation	-				
	11				

Daniel Lane

Key Take Away

- 1. Two part project: Danfoss test lab and prototype test lab.
- 2. Currently developing thermal analysis for a suitable camera and possible insulation unit.
- 3. Waiting for the second part order to arrive from shipment.

Daniel Lane

References

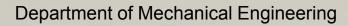
Cincinnati Sub-Zero.Enviromental.(2017).Environmental Chamber Controller: User Manual. Sharonville, OH.GENTHERM

Thermotron.(2009).Environmental Chamber: Instruction Manual.Holland,MI.Thermotron

Multi-channel Data Logger LR8400, LR8401, LR8402. (n.d.). Retrieved from https://www.hioki.com/en/products/detail/?product_key=5613

Coley, P. (n.d.). Old V-Model Diagram. Retrieved October 03, 2018, from https://www.coleyconsulting.co.uk/old-v-model.htm

Department of Mechanical Engineering



Backup Slides

Department of Mechanical Engineering

	_											
Task Name	Sat 2/2	Sun 2/10	Mon 2/18	Tue 2/26	Wed 3/6	Thu 3/14	Fri 3/22	Sat 3/30	Sun 4/7	Mon 4/15	Tue 4/23	Wed 5/1
▲ Receive all parts					•							
Begin Spring Presentation 2												
Cut base for prototype and 3D print components			h									
Program microcomputers for prototype												
Assemble prototype												
Reading review 2												
Advisor meeting 2												
✓ Complete prototype build									•			
Test and modify												
Create design report												
Create Operation manual and connection proposal												
create mini poster												
Reading Review 3												
Advisor Meeting 3												
Prototype testing complete							- I		•			
Create final project poster and presentation												
Edit prototype documentation												
Edit connection proposal and operation manual												
Prototype documentation, connection proposal, and operation manual complete											•	•
Prepare for final presentation												
Begin studying for finals												
Engineering Design Day												I
Study for finals												l i i
Reading Review 4												
Advising Meeting with Dr. McConomy												
Finals Week											- I	
Graduation												
	-0											

Camera Links

https://www.jmcanty.com/product/high-temperature-surveillancecamera/

https://www.larsonelectronics.com/p-150537-.aspx?keyword=&gclid=EAIaIQobChMI2fnb65ui3gIVQ0OGCh2zUwnO EAkYBiABEgIJh_D_BwE

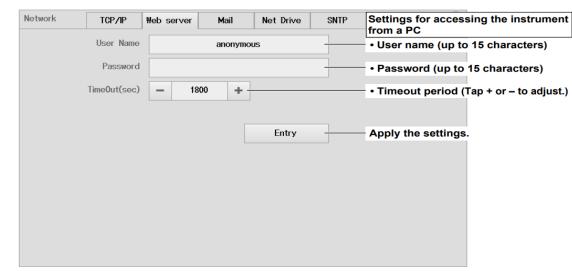
Hardware

- Three different types of hardware being integrated
- All network connection will be via Ethernet cable
- An IP address will be required to enable connectivity

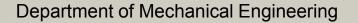
DL350 Data Logger

Cincinnati Sub Zero Climate Chamber

Thermatron-800 Climate Chamber

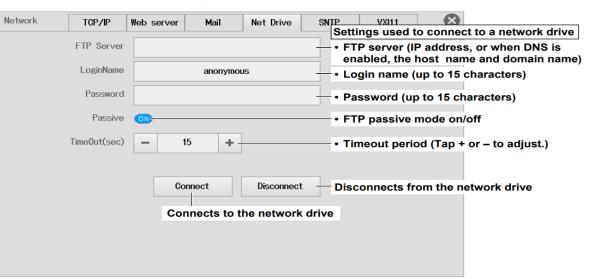

DL 350 Data Logger (Web Server)

Utility Network Menu


1. On the waveform screen, tap MENU > Utility > Network. A network screen appears.

Configuring the Web Server (Web Server)

- 2. Tap the Web Server tab.
- **3.** Tap each item. Use the input box to set the items.


DL 350 Data Logger (Network Drive)

Utility Network Menu

1. On the waveform screen, tap MENU > Utility > Network. A network screen appears.

Configuring a Network Drive and Connecting to It (Net Drive)

- 2. Tap the Net Drive tab.
- 3. Tap each item. Use the displayed input box to set the items.

Cincinnati Sub-Zero Climate Chamber

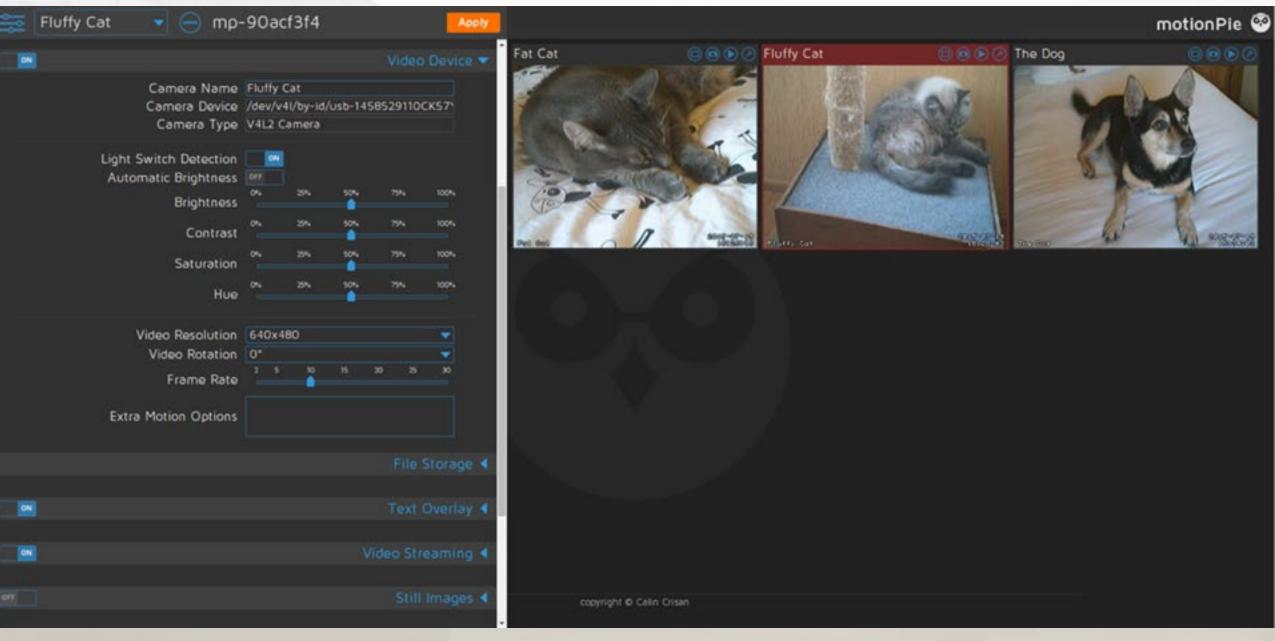
- Virtual network computing (VNC) accessible with free software download
- Enter the IP address of the chamber

	Server: 192.168.	3.102.0	•
C End	cryption: Always 0	ff	*
About.	Options	OK	Cancel

Thermatron Climate Chamber

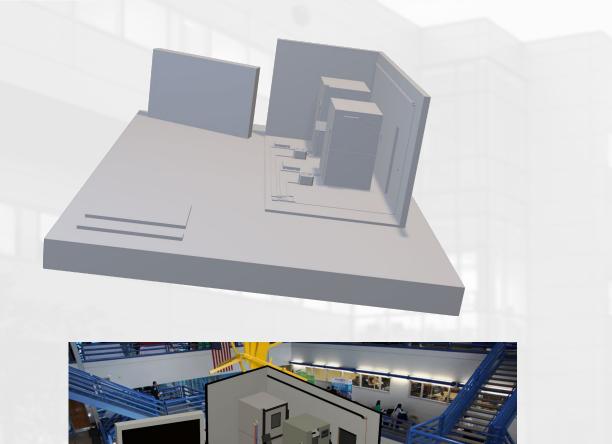
Communication panel

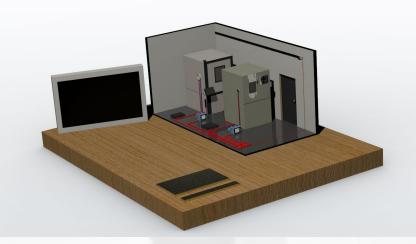
Baud Rate:		÷	Network (TCP/IP) O DHCP Static IP Address: Gateway:				Computer I/O 232 485 GPIB			
Parity:	None	•	0.0.0.0 0.0.0.0				Use Internal Card			
			Subnet Mask: DNS Server:					-		
Word Length:	Eight	•	0.0.00	0.0.0.0		Address:	0			
Stop Bits:	One	•	Computer I/O	ute <mark>r I/O</mark>			Baud Rate:	19200	•	
Terminator:	CR	•	TCP Port: 8888	Terminator:	CR	٠	Parity:	None	•	
✓ Send Acknowledgement ✓ Send Acknowledgement Command Compatibility: 8800					Word Length:	Eight	•			
Cmd 8800 -		3	command compa	ubiirty: 0000			Stop Bits:	One	•	
				e Web Server			Terminator:	CR	•	
			Network Identification Computer Name				Prefix	Send EO	t.	
			Workgroup			-	Send Acknowl	ledgement		
			Chamber Description		ber Controller	-	Cmd	8800	•	
			Map Network Drive	Disconne	ct Network Dr	ive				
			IOD	iagnostics						

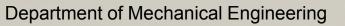

Webserver

- Select setup
- Select the

communication panel






Department of Mechanical Engineering

Thermal Equations

Conduction

$$Q = -kA\frac{dT}{dx}$$

K: thermal conductivity (W/mK) A: Area (m^2)

Convection

$$Q = h_c A(T_{surface} - T_{fluid (air)})$$

 h_c = Heat transfer coefficient (W/ $m^2 K$) A: Area (m^2)

Radiation

 $Q = \sigma T^4$ $\sigma = \text{Stefan-Boltzman Constant } (5.6703 \times 10^{-8} W/m^2 K^4)$ T: Absolute Temperature (K)